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The inviscid compressible instability of columnar-vortex flows to three-dimensional 
perturbations with large wavenumbers is considered. The sufficient conditions for 
instability obtained are compared with recently published results for incompressible 
fluids. 

1. Introduction 
The problem of stability of helical flows has been studied in a number of papers 

over the years. Recently, Leibovich & Stewartson (1983) studied the problem for an 
unbounded, homogeneous and inviscid fluid subject to  infinitesimal three-dimensional 
disturbances. By using an asymptotic analysis for large azimuthal wavenumbers, 
they were able to obtain a sufficient condition for instability of columnar vortices : 

where r denotes the distance from the axis of symmetry, W ( r )  the axial velocity and 
V ( r )  the azimuthal velocity of the basic flow. By comparison with numerical solutions 
for a specific family of flows, Leibovich & Stewartson also found that the asymptotic 
theory predicts the most-unstable wave with reasonable accuracy for values of the 
azimuthal wavenumber n as low as 3, and that i t  improves rapidly in accuracy as 
n increases. 

The main purpose of the work by Leibovich & Stewartson (1983) was to study the 
role played by hydrodynamic instabilities in phenomena such as vortex breakdown 
that are known to occur for instance in trailing line vortices downstream of the 
wingtips of aircraft. The speeds involved in these phenomena are usually low 
compared with the speed of sound, and almost all systematic studies available so far 
seem to have been carried out a t  low speeds. Leibovich & Stewartson therefore 
restricted their study to an incompressible homogeneous fluid. For large aircraft, 
however, the trailing vortices are so strong that they may cause serious hazards for 
a following smaller aircraft (Chigier 1974). In  such cases the speeds involved and the 
resulting density stratification of the fluid in the vortices must be significant; i t  is 
therefore not clear u priori that  the effects of compressibility and stratification are 
always negligible in the associated stability problem. Thus i t  should be of interest 
to extend the results obtained by Leibovich & Stewartson to compressible fluids. This 
extension has, however, already been partly done by Eckhoff & Storesletten (1978) 
in a somewhat more general setting where a special family of external forces as well 
as possible tubular boundaries are taken into account. 

The asymptotic analysis carried out by Leibovich & Stewartson for the normal 
modes is of the WKB type. The generalized progressing-wave expansion method used 
by Eckhoff & Storesletten is different, but is also a generalization of the WKB method. 
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It is an asymptotic method valid for large wavenumbers, and i t  has been proved by 
Eckhoff (1981) that  i t  can be used to establish sufficient conditions for instability as 
anticipated by Eckhoff & Storesletten. Since the WKB method is the starting point 
in either of the two reported ways of approaching the stability problem for columnar 
vortices, it  must be anticipated that the results are directly comparable. The purpose 
of this note is to show the expected conformity of the results and to make some 
remarks on the differences found for the two models and the two approaches. I n  
particular we shall show that the extension of the condition (1 .1)  to  compressible fluids 
can easily be extracted from the results obtained by Eckhoff & Storesletten. 

2. Discussion of stability in the compressible case 
I n  addition to the notation introduced in 5 1 ,  we shall let po(r)  denote the density, 

po(r)  the pressure and co = (ypo/po)i the local sound speed in the basic flow, where 
y is a constant. Restricting ourselves to the case with no external forces and assuming 
that V ( r )  =k 0 everywhere, the theorem proved by Eckhoff & Storesletten (1978) then 
states that a necessary condition for stability of the basic flow is that 

-{ V2 PI, c;J v2 > -;(;+ vf)+{(;y[(;+ v y +  w 2 ] > :  

r Po 
almost everywhere in the fluid. 

Looking at the proof of this result in $3  of Eckhoff & Storesletten (1978), one will 
find that most of the instabilities detected when (2.1) is violated are perturbations 
with an algebraic growth in t .  Exponential growth was only found when the system 
of transport equations was autonomous, which occurred when 

where E2 and t3 are analogous to  local azimuthal and axial wavenumbers respectively. 
When (2.2) is satisfied, the local fluid-oscillation frequencies were found to be (for 
the full frequencies see $4) 

where 5' is analogous to the local radial wavenumber, and D is given by 

Thus we see that a sufficient condition for exponential instabilities in the 
compressible case is that  somewhere in the fluid D2 < 0 when (2.2) holds. Introducing 
(2.2) into (2.4), this sufficient condition for exponential instability is easily found to 
be 

Let us denote the quantity on the left-hand side in ( 2 . 5 )  by - p 2 ;  the corresponding 
maximum growth rate is then obtained by introducing (2.2) and (2.4) into (2.3) and 
setting 5' = 0. This immediately gives 

for the maximum local growth rate of the considered exponentially unstable 
perturbations. 
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3. The incompressible limit 
If we restrict our attention to exponentially growing disturbances, as was done by 

Leibovich & Stewartson (1983), our sufficient condition for instability (2.5) is seen 
to reduce to  the condition (1  . l )  in the incompressible (and homogeneous) limit ph-t 0, 
c,+ 00. Also, the relation (2.2) for the wavenumbers and our estimate (2.6) for the 
maximum growth rate are seen to match the ones found by Leibovich & Stewartson 
(1983, equation (5.6) and (5.8) respectively) in this limit. 

It is not as simple to consider the incompressible limit for the algebraically growing 
disturbances considered by Eckhoff & Storesletten (1978). I n  fact, a naive application 
of the results obtained in that paper may indicate that the basic flow is always 
unstable, since the inequality (2.1) can never be fulfilled in that limit. A more detailed 
analysis is needed, however, to  discuss the stability behaviour properly, since the 
growth rates for the growing perturbations may tend to zero in the limit ph+O, 
co+ CO. This limit should therefore be taken in the system of transport equations 
(Eckhoff & Storesletten 1978, equations (2.15)-(2.17)), and the stability properties 
of the resulting system then discussed. By an analysis completely analogous to that 
in Eckhoff & Storesletten (1978, 93), i t  is found that, when (2.2) is not satisfied, the 
system of transport equations tends asymptotically as 7 = In f + + co to the following 
system : 

where 

0 0 0 :! I I, 

(3.3) 

The matrix Bi is the incompressible limit of the corresponding matrix B, in Eckhoff 
& Storesletten (1978, equation (3.4)). Hence the eigenvalues of Bi are 

where Di is the incompressible limit of D given by (2.4), i.e. 

Asymptotically as t --t co the system of transport equations therefore has solutions 
that are proportional to each of the three factors t", j = 1, 2, 3. Thus a necessary 
condition for stability is seen to be that Dt 2 0 for every possible choice of 
wavenumbers c2, t3. From (3.5) this is easily seen to imply the following necessary 
conditions for stability of the basic flow when V =k 0 everywhere: 

w = 0, (3.6) 
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If either (3.6) or (3.7) is violated somewhere in the fluid, an algebraically growing 
disturbance exists in the incompressible limit. If (3.6) and (3.7) are satisfied, the 
trivial solution of the transport equations is stable in this limit. 

Condition (3.7) is exactly the classical Rayleigh condition, while (3.6) means that 
spiral flows are always unstable in the incompressible limit. However, it does not 
necessarily follow from this that  spiral flows are always unstable for the incompressible- 
fluid model. In  fact, from a mathematical point of view that model is an extremely 
singular limit of the compressible-fluid model. I n  particular we see that a compressible 
fluid allows for a larger class of perturbations than an incompressible fluid, since no 
perturbations of the density are allowed in the latter. Thus i t  should not be surprising 
if some instabilities found for compressible fluids do not have counterparts in the 
incompressible case, but I do not know of any discussion on this problem in the 
literature so far. Presumably i t  is always possible to show that exponential instabilities 
for compressible fluids have counterparts for incompressible fluids, so the discrepancies 
are most likely limited to the marginal cases where only algebraically growing 
disturbances can be found. The method of analysis used by Leibovich & Stewartson 
(1983) does not cover such marginal instabilities; i t  is therefore an open question 
whether they exist for an  inviscid incompressible fluid. 

4. Some remarks 
Since trailing vortices are formed continuously by the wings of an aircraft, i t  may 

seem a reasonable approximation to assume that the flow field is homentropic, i.e. 
that the fluid has uniform entropy, at least in the neighbourhood of the wings. Since 
obviously viscosity will have an effect in the core regions of the vortices, the flow 
field will certainly change downstream. However, I do not know of any systematic 
study where the developments of the density and the pressure structure in a trailing 
vortex are studied. 

If we assume a homentropic flow, we find that 

Hence the sufficient condition for exponential instability ( 2 . 5 )  reduces for such flows 
to the condition (1 .1)  found for incompressible flows, no matter how large the 
stratification is. Equation (4.1) simply means that the effect of compressibility and 
the effect of stratification exactly cancel each other in the problem considered. 

If (4.1) is satisfied, however, the condition (2.1) can never be fulfilled for vortex 
flows with W + 0. Thus the linear theory of inviscid compressible fluids predicts 
algebraically growing disturbances in this case. Looking a t  the st<ructure of the linear 
perturbation equations governing these instabilities, we will find that to  leading order 
only the velocity components in the azimuthal and axial directions are affected. I n  
this approximation the perturbations of the other field variables are either stable or 
growing a t  a slower rate. If the algebraic instabilities play a role in the development 
of the vortex structure downstream, we may therefore expect a redistribution in the 
velocity field in the axial and azimuthal directions. Such redistributions in the 
velocity field are observed in trailing vortices, but i t  is an open question whether the 
algebraic instabilities detected play any role in this development, or whether this 
development is totally dominated by the viscosity in the core region of the vortex. 
Presumably the development of the vortex structure downstream will in any case 
lead to growth of the left-hand side in (4.1). We may therefore expect the terms on 
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the far-left side of (2.5) to be positive far downstream of the wingtip, thus having 
a stabilizing influence on the exponentially growing disturbances. For a trailing 
vortex, however, the contributions due to stratification and compressibility are 
presumably very small compared with the other terms in (2.5); hence they can 
probably be neglected in most cases. If on the other hand we consider flows 
encountered in a gas centrifuge for instance, the terms due to stratification and 
compressibility are definitely not negligible a priori. 

Discussion of the effects of compressibility and stratification also parallels the 
above one for the frequencies of the modes when the sufficient conditions for 
instability (1.1) and (2.5) are not satisfied. I n  the autonomous case where (2.2) is 
satisfied, we see from Eckhoff & Storesletten (1978, equations (2.10a), (2.12d-8, 
(A 2), (A 7))  that  the frequency due to the principal phase function @ ( r ,  $, z, t )  is 

Here w is an expansion parameter, and with the notation of Leibovich & Stewartson 
(1983) we have n = -w% and a = w t 3 .  Since the amplitudes in the generalized 
progressing-wave expansions oscillate with the frequencies (2.3), the full frequencies 
in the leading terms of the expansions are the sum of (4.2) and (2.8), in correspondence 
with the results found by Leibovich and Stewartson (1983). For a special family of 
flows Leibovich & Stewartson also calculated corrections to the leading-order 
frequencies in the incompressible case. Presumably it is also possible to  obtain 
corrections in the compressible case by expansions similar to the uniform expansions 
constructed in Eckhoff (1982). Those expansions have so far only been worked out 
for simple roots in the characteristic equation, however, while the inertial waves are 
determined by a triple root. 
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